
Slide 1    

 

 

Hardware and Software Design of an  
MSP430-based Satellite using an RTOS 

 
speaker:  

Andrew E. Kalman, Ph.D. 
President, Pumpkin, Inc. 



Slide 2    

 

 

 

Part I 
 

 
Hardware & Software 
Requirements for a 

Small Satellite Mission 



Slide 3    

 

 

Nano- and picosatellites � The future of space? 
* Small, low-cost satellites built using commercial off-the-shelf (COTS) 

components are currently a hot topic. Commercial, educational and military 
organizations have expressed strong interest in picosatellite missions. 

 
CubeSat as an affordable standard for picosatellites 

* The CubeSat is a 10x10x10cm, 1kg open standard proposed by Stanford and 
Cal Poly San Luis Obispo universities for picosatellites. The space-qualified 
P-POD CubeSat launcher currently exists, and more launch platforms are 
planned. 

* CubeSats carry payloads for relatively simple missions (e.g. space-
qualification or behavioral demonstration).  

* Low-earth orbit (LEO) CubeSat missions have typical lifespan of 3-9 months.  
* Working from a standard promotes rapid development and idea sharing. 
* CubeSat standard includes requirements for safety equipment to satisfy 

launch providers (e.g. NASA, Russians, etc.). 
* Cost to complete a CubeSat mission (inception to launch to operation to end-

of-life) ranges from $100,000 to $500,000. 



Slide 4    

 

 

Picosatellite mission environments 
* Development, debugging & functional testing: typical lab environment. 
* Pre-delivery and pre-launch: temp/vac and shake tests, picosat may remain in 

storage for months on end waiting for launch. 
* Launch & deployment: high g-forces (10g or more). 
* Operation in space: vacuum, temperature extremes (-20º to  +60º C), solar 

radiation, and remoteness � just 1W average power from Sun. 
* End of mission: burn up in earth's atmosphere. 

Picosatellite components 
* Structure  
* Command & Data Handling (C&DH), with high-frequency transceiver and 

antenna  
* Communications (COM)  
* Electrical Power Systems (EPS) 
* Attitude Determination & Control (AD&C)  
* Payload  
* Software, Software, Software 



Slide 5    

 

 

A COTS CubeSat kit should: 
* Implement as many of the CubeSat standard's specifications as possible, 

thereby shortening the design & development timeline. 
* Integrate as much functionality into as small a space as possible, so as to 

leave plenty of room for the CubeSat's payload and other mission-specific 
hardware.  

* Be flexible, with a design that can accommodate a wide range of customer 
requirements and configurations. 

* Be expandable and modular, to accept other COTS hardware and software. 
* Provide a software development platform that's easy to use and debug. 
* Have a clearly-defined future upgrade path. 
* Include high-value-added features (hardware and software) to differentiate 

itself from the competition and "home-grown" CubeSats.  
* Be affordable.  



Slide 6    

 

 

 

 

 
Figure 1: Exploded View of Pumpkin's MSP430-based CubeSat Kit.  

MSP430 resides on FM430 Flight Module (PCB at bottom). 



Slide 7    

 

 

 

Part II 
 

Why Pumpkin Chose  
TI's MSP430 for the 

�

 



Slide 8    

 

 

MSP430's CubeSat Kit-friendly features include: 
* -40º to +85º C operating temperature range.   
* Relatively large code space (60K in MSP430F149) enables a high level of 

systems integration, thereby reducing parts count.  
* Highly orthogonal and C-friendly architecture makes for efficient high-level 

programming.   
* Good mix of on-board peripherals. Plenty of I/O.  
* JTAG & Flash accelerate the design & debug cycle.   
* Ultra-low-power design, dual clock sources and fast startup from sleep help 

minimize power consumption.   
* Wide range of tools (assemblers, compilers, RTOS, IDEs, JTAG debuggers, 

programmers, development kits, etc.) available.   



Slide 9    

 

 

The CubeSat Kit's MSP430 Flight MCU is responsible for: 
* Doing supervisory tasks, e.g. monitor in-satellite temperatures, voltages and 

currents, etc.   
* Managing bidirectional communications with the mission's ground station(s) 

(COM).   
* Acting autonomously and/or through commands from the ground station(s) or 

other satellites (C&DH).   
* Handling data storage and retrieval, either on-chip (in RAM or Flash) or off-

chip (mass storage).  
* Configuring its I/O to interface to multiple peripherals that share the same 

MSP430 port pins. 
* Depending on system complexity, EPS and AD&C functions may be 

implemented either in the MSP430 or in additional mission-specific CPUs and 
µC's that communicate with the MSP430. 



Slide 10    

 

 

 

 

 

 

 

 

LDOOFF

VCC+5V_USB

+5V

Transceiver

2

+5V_USB

JTAG

MSP430

2

UART0UART1 VREF
h/s

Reset

2

3

2

+5V_SW VCC

USB<->Serial

RS-232
2

+5V_USB +5V

P1 P2 P3 P4 P5 P6  
Figure 2: FM430 Flight Module Block Diagram 

 



Slide 11    

 

 

 

Part III 
 

 
MSP430-centric Hardware 

Architecture 



Slide 12    

 

 

Power system � Requirements 
* Many wireless transceivers operate with 5V supplies. The CubeSat Kit also 

accepts 5V-only PC/104 modules as payload to support those users who 
might need an additional, much higher-performance CPU, e.g. for image 
compression. Therefore this must be a mixed-supply system, supporting 5V 
and the MSP430's 3.3V.  

* The CubeSat Kit provides USB connectivity as a means of communicating with 
ground personnel when fully assembled and / or immediately prior to launch. 
USB can provide 5V at 500mA max.  

* As only 1W average power from the sun is available to charge solar cells on a 
1U (10x10x10cm) CubeSat, the power consumption of the MSP430 and all 
support circuitry must be minimized so that the MSP430 can run 24x7 in its 
supervisory roles while batteries are being charged. Transmitting alone 
requires 4-5W instantaneous power. 

* All power switching must be solid-state � no relays. 
* Power supplies should exhibit good design for EMI resistance. 
* Peak current draw can exceed 5A. Switches and connectors must be rated 

accordingly. 



Slide 13    

 

 

Power system � Solution 
* 5V available system-wide on CubeSat Kit Bus�.  
* Due to concerns over switching noise and system complexity, TI's TPS769xx 

family of LDO linear ultralow-power regulators was chosen to supply 3.3V on 
the CubeSat Kit's Flight Module:  

* 17µA max quiescent current @ 100mA output 
* Overcurrent protection  
* 1µA sleep current via �EN (on CubeSat Kit Bus)  
* -40º to +125º C operating range 

These regulators require careful attention to choice of output capacitor for 
stabilization. Yet their stability is quite tolerant of changes in output capacitor 
ESR that will occur in space due to temperature fluctuations. Additionally, 
unused 3.3V power is available system-wide via CubeSat Kit Bus. This LDO is 
the largest single power consumer on the Flight Module. If the Flight Module 
is the only consumer of 3.3V power, overall system inefficiencies due to the 
5V↔3.3V downconversion are irrelevant. 

* Because the Flight Module runs at 3.3V, and system power is supplied at 5V, 
we have the opportunity to feed the 3.3V LDO from a multitude of 5V sources, 
via a simple Schottky diode drop. Therefore the Flight Module is powered 
from system 5V or USB 5V, whichever is present (Figure 3). 

 



Slide 14    

 

 

Power system � Solution (cont'd) 
 

 

 

 

 

 

 

 

VCC

C6
10U-16-T

R17
287K

IN  1

G
N
D

2

-EN  3 NC/FB 4

OUT 5

U5
TPS76901DBVR

C5
0.1U

  1

  2
3

D2
BAT54C

+5V

OFF_VCC

+5V_USB

-->
R16
330K

R18
169K

 
Figure 3: Multiple 5V Sources Feeding Ultralow-power 3.3V LDO Linear Regulator 



Slide 15    

 

 

Mixed 3.3V/5V design � Requirements 
* Flight Module components running at 3.3V include:  

* MSP430 (all I/O on CubeSat Kit Bus) 
* Reset supervisor  
* Serial-to-USB converter (serial side)  

* Flight Module components running at 5V include:  
* 2.4GHz spread-spectrum transceiver 
* Serial-to-USB converter (USB side) 

* The MSP430 drives either the transceiver, the serial-to-USB converter or the 
CubeSat Kit Bus through USART1. Because of the high quiescent power 
consumption of the transceiver (1W) and serial-to-USB converter (2mW) 
compared to the MSP430, these devices should only be powered when 
connectivity is required. Therefore a zero-power, isolating and (for the 
transceiver) level-shifting interface must be employed. 

* Power-up / power-down of 3.3V and 5V sides may occur separately at any time. 
MSP430 must be protected from overcurrents on its I/O pins from output 
drivers. Transceiver and serial-to-USB converter must not be powered 
through input pins via MSP430 outputs. 



Slide 16    

 

 

Mixed 3.3V/5V design � Challenges 
* Any scheme that doesn't keep signals at the CMOS rails will consume large 

quiescent power.  
* Resistive level shifters (e.g. for 3.3V↔5V) waste power and don't provide 

isolation.  
* There are many integrated bidirectional level-shifting solutions on the market 

today. But few of them offer level translation and power-off isolation with zero 
current draw.  

* Popular FET-based (bus) switches have simple, symmetric flow-through 
architectures that are well-suited to voltage translation and bus isolation. 
However, they require charge pumps to increase the voltage at each switch's 
gate so that VGS is adequate to turn on the switch. This adds 10µA-2mA of 
current draw, typically on a per-level-translated-pin basis.  



Slide 17    

 

 

Mixed 3.3V/5V design � Solution 
* Assuming that individual control outputs idle high, they can be level-shifted 

using discrete MOSFETs and resistors at zero power (Figure 4). 
* To translate 3.3V up to 5V, we use half of an AHCT244 powered at 5V (on 

demand). The �OE control signal must also be level-shifted to 5V for 
minimum power consumption (Figure 5). 

* To translate and isolate 5V down to 3.3V, we use half of an LVC244A powered 
at 3.3V (permanently). The �OE control signal must also pulled to the chip's 
VCC for minimum power consumption and power-on / power-off isolation 
(Figure 6). 

C7
0.1U

+5V_SW

1

  2 3

Q1
IRLML6402

R21
330K

+5V

R19
330K

VCC

0V

VCC

Pulled up on R15

1

  2 3

Q2
IRLML2803

R20
330K

VCC

0V

+5V R23
1.5K

--> -OE_MHX_+5V0V

+5V1

  2 3

Q3
IRLML2803

0V

VCC

-->-ON_+5V

-->-OE_MHX

 
Figure 4: Level Shifting for Individual Unidirectional Control Signals 



Slide 18    

 

 

Mixed 3.3V/5V design � Solution (cont'd) 
 
 
 
 
 
 
 
 
 

+5V +5V_SW

-->
-->
-->
-->

TXD_MHX
-RTS_MHX
-DTR_MHX
-RST_MHX

1A1  2

1A2  4

1A3  6

1A4  8

1Y1 18

1Y2 16

1Y3 14

1Y4 12

2A1 11

2A2 13

2A3 15

2A4 17

2Y1  9

2Y2  7

2Y3  5

2Y4  3

-1OE  1

-2OE 19

V
C
C

2
0

G
N
D

1
0
U3
SN74AHCT244PWR

R15
330K

P3.6
P6.3
P6.4
P6.5

-->

-->
-->

-->

+5V

+3.3V

-OE_MHX_+5V -->

 
Figure 5: Level Shifting up to 5V using AHCT Logic 



Slide 19    

 

 

Mixed 3.3V/5V design � Solution (cont'd) 
 
 
 
 
 
 

+5V+3.3V

1A1  2

1A2  4

1A3  6

1A4  8

1Y1 18

1Y2 16

1Y3 14

1Y4 12

2A1 11

2A2 13

2A3 15

2A4 17

2Y1  9

2Y2  7

2Y3  5

2Y4  3

-1OE  1

-2OE 19

V
C
C

2
0

G
N
D

1
0
U2
SN74LVC244APWR

R14
330K

VCC

<--
<--
<--
<--

RXD_MHX
-CTS_MHX
-DSR_MHX
-DCD_MHX

R9

4.7K

P3.7

P6.6

P6.0
P6.1
P6.2

<--
<--
<--
<--

-->

 
Figure 6: Level Shifting down to 3.3V and Isolating using LVC Logic 



Slide 20    

 

 

Isolated bus-powered serial-to-USB interface � Requirements 
* The USB interface must power the Flight Module when a USB cable is 

connected. 
* The Flight Module must be powered from either the system 5V or the USB 

interface automatically. 
* When unpowered, the serial-to-USB converter must be completely isolated 

from the MSP430, and consume no power. 
* Programmable support for USB VID, PID, etc. 
* Customizable USB drivers for multiple platforms (Win, Mac OS, Linux, etc.). 



Slide 21    

 

 

Isolated bus-powered serial-to-USB interface � Solution 
* FTDI's FT232BM with external configuration EEPROM and Win/Mac OS/Linux 

drivers.  
* 5V from USB bus drives 3.3V LDO for Flight Module. 
* Bus-powered design provides 3.3V to power LVC244A isolation circuitry via 

FT232BM's 3V3_OUT pin. 
* When USB cable is removed, LVC244A automatically isolates MSP430 from 

FT232BM through its partial power-down mode (Figure 7). 
 

 

<--
<--

+3.3V +5V

-RTS_USB
TXD_USB

VCC_IO

R1
1A1  2

1A2  4

1A3  6

1A4  8

1Y1 18

1Y2 16

1Y3 14

1Y4 12

2A1 11

2A2 13

2A3 15

2A4 17

2Y1  9

2Y2  7

2Y3  5

2Y4  3

-1OE  1

-2OE 19

V
C
C

2
0

G
N
D

1
0
U1
SN74LVC244APWR

R13
330K

P6.0
P3.7<--

<--
<--
<--

-->

-->
-->

-->

<->

4.7K
P6.3
P6.4

P6.1

P6.5

P6.2

P3.6

P1.7

R5

4.7K

-->
-->
-->

<--
<--

-->

-CTS_USB
RXD_USB

-RST_USB
-RI_USB

-DTR_USB
-PWE_USB

 
Figure 7: 3.3V Isolation Driven by Presence of External Power VCC_IO 



Slide 22    

 

 

Isolated bus-powered serial-to-USB interface � Solution (cont'd) 
 
 
 
 

+5V_USB VCC_IOAVCC
5
6

1234

J3
USB-B-RA

C8
.01U

L1
FB-USB

+5V_USB

3V3OUT  6

USBDM  8

USBDP  7

-RESETOUT  5

XTIN 27

XTOUT 28

-RESET  4

EECS 32

EESK  1

EEDATA  2

TEST 31

A
G
N
D

2
9

G
N
D

9

G
N
D

1
7

-SLEEP 10

TXD 25

RXD 24

-RTS 23

-CTS 22

-DTR 21

-DSR 20

-DCD 19

-RI 18

TXDEN 16

-PWREN 15

PWRCTL 14

-TXLED 12

-RXLED 11

V
C
C
-
I
O

1
3

A
V
C
C

3
0

V
C
C

2
6

V
C
C

3
U7
FT232BM

R24
27

R25
27

R26 1.5K

VCC_IO

-->

-->
<--

<--

<--

-->

-RTS_USB
-CTS_USB

TXD_USB
RXD_USB

-RI_USB

-DTR_USB

DTE

-->

C11
.033U

-PWE_USB

VCC_IO

R22
330K

VCC_IO

-->

6.000MHz

C9
27P

C10
27P

X5
XTAL-CAN

-RST_USB

16 bits wide

CS  1

SK  2

DI  3

DO  4GND  5 NC  6 NC  7 VCC  8

U8
93C46B/SN+5V_USB

C12
0.1U

R27
10K

R28
2.2K

R29
470

+5V_USB

+5VR41
330K

AVCC +3.3V

 
Figure 8: Bus-powered Serial-to-USB Converter for 3.3V Interface 



Slide 23    

 

 

Protecting the MSP430's I/O 
* Absolute maximum over / undervoltage: ±0.3V 
* Overvoltage specification can be violated if MSP430 is OFF and driving 

circuitry is ON. In-line resistor will protect MSP430 by dropping voltage and 
limiting current. 

* Absolute maximum diode current at any pin: ±2mA 
* Overcurrent specification can be violated if MSP430 I/O is configured as an 

output and connected to another output. This could happen due to a 
programming error if I/O pin is used as both input and output, depending on 
overall system configuration. In-line resistor will protect MSP430 by limiting 
current. 

* Figure 6 and Figure 7 illustrate this technique. 4.7kΩ series limiting resistors 
chosen for adequate margin under all possible operating conditions 
(including user error). 



Slide 24    

 

 

Reset supervisor 
* TI's micropower TPS3838 series nanopower supervisory circuit is used.  
* Supply current < 300nA. 
* -40º to +85º C operating range 
* Open-drain output is required for reliable JTAG debugging.  
* �MR input on CubeSat Kit Bus to allow external MSP430 reset. 

 
 
 
 
 
 
 

-RESET

VCC_MCU

V
D
D

5

CT  1 G
N
D

2

-MR  3

-RESET  4

U4
TPS3838K33DBVR

-->

TP8
TP

R40
100K

-RST/NMI

VCC_MCU

 
Figure 9: Nanopower Reset Supervisor with Open-drain Output 



Slide 25    

 

 

Multitasking the MSP430's I/O pins 
* By isolating the transceiver and serial-to-USB converter from the MSP430's 

bus, we can configure the directions of the eight associated pins for multiple 
purposes: RS-232 Tx/Rx + DCE handshaking (transceiver enabled), RS-232 
Tx/Rx + DTE handshaking (serial-to-USB converter enabled), and user-defined 
(neither enabled). 

P1.[0..7]P1.[0..7]

TACLK/P1.0 12

TA0/P1.1 13

TA1/P1.2 14

TA2/P1.3 15

SMCLK/P1.4 16

TA0/P1.5 17

TA1/P1.6 18

TA2/P1.7 19

ACLK/P2.0 20

TAINCLK/P2.1 21

CAOUT/TA0/P2.2 22

CA0/TA1/P2.3 23

CA1/TA2/P2.4 24

ROSC/P2.5 25

ADC12CLK/P2.6 26

TA0/P2.7 27

STE0/P3.0 28

SIMO0/P3.1 29

SOMI0/P3.2 30

UCLK0/P3.3 31

UTXD0/P3.4 32

URXD0/P3.5 33

UTXD1/P3.6 34

URXD1/P3.7 35

TB0/P4.0 36

TB1/P4.1 37

TB2/P4.2 38

TB3/P4.3 39

TB4/P4.4 40

TB5/P4.5 41

TB6/P4.6 42

TBCLK/P4.7 43

STE1/P5.0 44

SIMO1/P5.1 45

SOMI1/P5.2 46

UCLK1/P5.3 47

MCLK/P5.4 48

SMCLK/P5.5 49

ACLK/P5.6 50

TBOUTH/P5.7 51

A0/P6.0 59

A1/P6.1 60

A2/P6.2 61

A3/P6.3  2

A4/P6.4  3

A5/P6.5  4

A6/P6.6  5

A7/P6.7  6

A
V
C
C

6
4

D
V
C
C

1

A
V
S
S

6
2

D
V
S
S

6
3

VEREF+ 10

VREF-/VEREF- 11

VREF+  7

XIN  8

XOUT/TCLK  9

-RST/NMI 58

TCK 57

TMS 56

TDI 55

TDO/TDI 54

XT2IN 53

XT2OUT 52

U6
MSP430F149IPM

VCC

1
2
3
4
5
6
7
8

1
0

9
J2
FH10A-8S-1SHB

TDI
TMS
TCK

TDO

*

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

P2.0
P2.1
P2.2

P5.[0..7]

P2.[0..7]

P3.[0..7]

P4.[0..7]

P6.[0..7]

P2.[0..7]

P3.[0..7]

P6.[0..7]

P4.[0..7]

P5.[0..7]

P2.3
P2.4
P2.5
P2.6
P2.7

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5

JTAG

XIN
XOUT

for use with
SoftBaugh JFPC

-RST/NMI

XT2IN
XT2OUT

*
*

*

P3.6
P3.7

P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
P4.6
P4.7

*
*

P6.0
P6.1

P5.0
P5.1
P5.2
P5.3
P5.4
P5.5
P5.6
P5.7

TP3

VREF+

VREF+
VEREF+
VREF-

TP1

TP2

VEREF+

VREF-
*: fully or partially

dedicated I/O pins

*
*
*
*
*

P6.2
P6.3
P6.4
P6.5
P6.6
P6.7

7.328MHz

TP7

X3
XTAL-CAN

XT2IN
XT2OUT

TP5

TP6

X2
XTAL-CM155

XIN
XOUT

32.768kHz

TP4

C3
27P

C4
27P

 
Figure 10: Dedicated I/O Pin Usage. Pin Modes Dictated by Configuration 



Slide 26    

 

 

Hardware Results 
* System-wide power consumption of <250µW asleep, <10mW operational, 

functional over -40º to +85º C operating range. 
* Implemented on a single 90x96mm six-layer PCB, topside components only. 
* MSP430F149's entire I/O pinout (and more) is available on two PC/104-type 

stacking connectors.  
* Mini-JTAG connector present for programming and debugging. 

 
Figure 11: FM430 Flight Module Top View 



Slide 27    

 

 

 

Part IV 
 
 

Rapid MSP430 Application 
Development                 

using  



Slide 28    

 

 

 Salvo� RTOS features and operational details 
* Tasks 

* 16 dynamic task priority levels. 
* "Run forever with one or more context switches" task structure. 
* Tasks can be created, started, stopped, destroyed, etc. 
* A context switch always results in the most-eligible task running. 
* Constraints: 

* Context switch may only occur at the task level. 
* A tasks' local / auto variables are usually replaced with static variables.1 

* Events 
* Binary semaphores, semaphores, messages, message queues and event flags are 

supported. 
* Events can be created and signaled from anywhere. Tasks can wait events (with optional 

timeouts). 

* Timers 
* Single system timer controls all task delays and timeouts, as well as system tick services. 
* OSTimer() can be called from any periodic timer. 



Slide 29    

 

 

Salvo port to TI's MSP430 
* Memory requirements 

* RAM usage per task control block: 14 bytes max.2 
* RAM usage per event control block: 6 bytes max.3 
* Stack size: Similar to typical foreground / background application. 
* Flash usage: 400-1700 bytes. 

 
tutorial memory usage4 total Flash5 total RAM6 

tu1lite 450 22 
tu2lite 596 22 
tu3lite 638 24 
tu4lite 1148 34 
tu5lite 1562 50 
tu6lite 16787 528 
tu6pro 15509 4810 

Table 1: Flash and RAM requirements for Salvo Applications built with 
IAR's MSP430 C Compiler 

* Context switching 
25µs @ MCLK = 8MHz (with priorities, events, etc.).11 

* Interrupt control 
* Default configuration is for GIE to be disabled during critical sections. 
* Interrupt latency can be minimized via user (re-)configuration of interrupt control.12 



Slide 30    

 

 

Salvo on the MSP430 
* Suitability 

* MSP430's 2K RAM and 60K Flash are ideal for Salvo applications � 20-task, 30-event 
application consumes under 15% RAM and 5% Flash, leaving plenty of RAM and Flash 
for user application. 

* Salvo runs on every member of the MSP430 family. 

* Low power 
* Salvo's event-driven multitasking allows application to sleep at all times, waking only for 

activity (i.e. internal or external events). 

* Performance 
* MSP430's highly orthogonal instruction set and comprehensive addressing modes mean 

rapid execution of Salvo services. 

* Tools 
* Non-intrusive, easy to debug. 
* Works seamlessly with all major toolsets. 
* Pumpkin and MSP430 compiler vendors are actively involved in further integrating Salvo 

into their toolsets. 



Slide 31    

 

 

 CubeSat Kit software requirements 
* USART1 

* Manage isolation & interface to USB / transceiver / user to avoid contention. 

* USB 
* Detect when USB I/F is present. 
* Acquire & release USB interface. 

* Transceiver 
* Tx / Rx when requested. 
* Acquire & release transceiver interface, including the control of transceiver power when 

Tx'ing / Rx'ing. 

* P6 
* Sample at a variety of rates via A/D inputs. 
* Handshake control to USB / transceiver interface. 

* Other processes 
* Perform a myriad of other simultaneous operations (e.g. data processing, system status 

reporting, storing and retrieving data to / from external NVRAM, etc.). 

* Power consumption 
* Sleep whenever no activity is warranted. 



Slide 32    

 

 

Task to read ambient temperature 
* Configure ADC12 and read internal temperature sensor at 1/2Hz. 

 
unsigned int ADCresult;
unsigned long int DegC;
…
void TaskMeasureAmbientTemp( void )
{
/* setup ADC12 to read ch 10, etc. */
ADC12CTL0 = ADC12ON+REFON+REF2_5V+SHT0_6;
ADC12CTL1 = SHP;
ADC12MCTL0 = INCH_10+SREF_1;

/* wait 10ms for reference startup */
OS_Delay(1, label);

/* enable conversions */
ADC12CTL0 |= ENC;

for (;;)
{
ADC12CTL0 |= ADC12SC; // start conversion
OS_Delay(200, label); // wait 2s
ADCresult = ADC12MEM0; // read result
DegC = ((((long)ADCresult-1615)*704)/4095); // calc. DegC

}
}



Slide 33    

 

 

TaskMeasureAmbientTemp() 
* Attributes 

* Runs independently of others, i.e. loosely-coupled. 
* Runs at a low priority. Ambient temp sensing is not a high-priority issue in this system. OK 

if other, higher-priority tasks prevent it from running immediately after its 2s delay expires. 
* Uses minimal run-time resources. During the 2s period between successive reads of 

ADC12MEM0, no CPU cycles are expended on TaskMeasureAmbientTemp(), and other 
tasks are free to run.  

* No inter-task communications, because it runs alone, accessing global variables. 

* Additional features 
* Salvo's ability to context-switch at any place in the task allows other tasks to run while 

TaskMeasureAmbientTemp() is waiting for 10ms delay during ADC12 initialization. 



Slide 34    

 

 

Task to detect if USB is connected 
* Check for USB every 250ms, signal system if present. 

 
void TaskDetectUSB( void )
{
for (;;)
{
/* proceed if USB/MHX I/F is not in use */
OS_WaitBinSem(BINSEM_USB_MHX_AVAIL_P, OSNO_TIMEOUT, label);
OpenUSBMHXIF(USB);

if ( !FM430status.USBpresent && (P1IN & BIT7) )
{
FM430status.USBpresent = 1;
FM430Msg0("DetectUSB: USB connected.");

}
else if ( FM430status.USBpresent && !(P1IN & BIT7) )
{
FM430status.USBpresent = 0;
FM430Msg0("DetectUSB: USB disconnected.");

}

/* release USB/MHX I/F */
CloseUSBMHXIF(USB);
OSSignalBinSem(BINSEM_USB_MHX_AVAIL_P);

/* come back in 25 ticks */
OS_Delay(25, label);

}
}



Slide 35    

 

 

TaskDetectUSB() 
* Attributes 

* Runs independently of others, i.e. loosely-coupled. 
* Runs at a moderate priority. System should detect USB connections quickly. 
* Uses minimal run-time resources. During the 250ms period between testing for USB 

presence, no CPU cycles are expended on TaskDetectUSB(), and other tasks are free 
to run.  

* A binary semaphore is used to control access to a shared resource, the USB / transceiver 
interface. 

* Additional features 
* TaskDetectUSB() will be "held off" until the USB / transceiver interface is available. If the 

interface is not available (i.e. another task is using it), TaskDetectUSB() will acquire it 
when the interface is released and TaskDetectUSB() is the highest-priority task waiting 
to use the interface. 



Slide 36    

 

 

Task to transmit data via transceiver 
* When interface is available, send data 

 
void TaskTalkMHX( void )
{
for (;;)
{
/* proceed if USB/MHX I/F is not in use */
OS_WaitBinSem(BINSEM_USB_MHX_AVAIL_P, OSNO_TIMEOUT, label);
OpenUSBMHXIF(MHX);

/* turn transceiver on, wait 1s while it resets */
Enable_5V_to_MHX();
OS_Delay(100, label);

/* enter command mode, wait 1s */
FM430PutstrTx1("ATA\r");
OS_Delay(100, label);

/* send some data, wait 1s, turn transceiver off */
sprintf(strTmp, "TalkMHX:" " Ambient temp is %d C", DegC);
FM430Msg1(strTmp);
OS_Delay(100, label);
Disable_5V_to_MHX();

/* release USB/MHX I/F */
CloseUSBMHXIF(MHX);
OSSignalBinSem(BINSEM_USB_MHX_AVAIL_P);

}
}



Slide 37    

 

 

TaskTalkMHX () 
* Attributes 

* Runs independently of others, i.e. loosely-coupled. 
* Runs at a moderate priority.  
* Uses minimal run-time resources. During the 3s period that the task waits for delays to 

expire, no CPU cycles are expended on TaskTalkMHX(), and other tasks are free to 
run.  

* A binary semaphore is used to control access to a shared resource, the USB / transceiver 
interface. 

* Additional features 
* Like TaskDetectUSB(), TaskTalkMHX() must acquire the USB / transceiver interface 

before proceeding, etc. 
* Once TaskTalkMHX() has acquired the USB / transceiver interface, all other tasks 

wishing to use the interface must wait (i.e. "are blocked") until TaskTalkMHX() releases 
the interface at the end of transmission. 



Slide 38    

 

 

Entering and exiting low-power modes 
* Sleep whenever there are no eligible tasks. 

 
void OSIdlingHook (void)
{
__low_power_mode_1();

}

* OSIdlingHook() is called only when no tasks are eligible to run. Therefore it's the ideal 
place to sleep the processor, until an event (i.e an internal or external interrupt) occurs. 

 
* Exit LPM after each interrupt that calls a Salvo service. 

 
#pragma vector=TIMERA0_VECTOR
__interrupt void Timer_A (void)
{
CCR0 += 10000;
OSTimer();
__low_power_mode_off_on_exit();

}
 

* Don't re-enter LPM until Salvo's scheduler has processed event(s). ISRs that are 
independent of Salvo can resume LPM on exit. 



Slide 39    

 

 

Putting it all together 
* Initialize, create tasks and events, begin multitasking. 

 
void main (void)
{
/* user init */
Init();

/* Salvo init */
OSInit();

/* several interrupts are used */
__enable_interrupt();

/* create tasks */
OSCreateTask(TaskStatusMonitor, OSTCBP(1), 3);
OSCreateTask(TaskDetectUSB, OSTCBP(2), 8);
OSCreateTask(TaskTalkUSB, OSTCBP(3), 5);
OSCreateTask(TaskTalkMHX, OSTCBP(4), 7);
OSCreateTask(TaskMeasureAmbientTemp, OSTCBP(5), 11);
…
/* create events */
OSCreateBinSem(BINSEM_USB_MHX_AVAIL_P, 1);

/* go */
for (;;)
{
OSSched();

}
}



Slide 40    

 

 

Expanding the application 
* Use additional binary semaphores and task priorities to manage access to 

resources: 
* Analog sampling tasks wait for P6 (shared with USB / transceiver interface) to be available 

before proceeding. 
* User USART1 task waits for USART1 (used by TaskTalkUSB() and TaskTalkMHX() to 

be available before proceeding. 

* Run additional periodic tasks at multiples of system tick period. 
* Use messages and message queues for intertask communications: 

* Multiple, asynchronous sampling tasks pass data to a single task that logs captured data to 
NVRAM. 

* Highest-priority tasks wait on critical events. 

* Use free-running system timer for timestamps. 
* Handle lost events via wait-with-timeout. 
* Run uIP-based web server supporting multiple simultaneous connections. 



Slide 41    

 

 

Example application results 
* Application uses and is configured for: 

* 10ms system tick period  * Multiple interrupt sources 
* LPM1     * MCLK, SMCLK 
* sprintf(), 16-bit multiply & divide 
* Subsystems: 

* Timer_A, USART0, USART1, ADC12, WDT, Digital I/O 

* Salvo configured for: 
* 16-bit delays    * Priority-based multitasking 
* Binary semaphores   * 15 tasks 
* 32-bit system timer   * 1 event 

* Salvo's memory requirements13 on MSP430F149 for this application: 
* 1132 bytes Flash (1.8%) for Salvo services. 
* 171 bytes RAM (8.3%) for Salvo's global objects. 
* Default of 90 bytes RAM (4.4%) for stack is more than sufficient. 

* Application's power consumption: 
* Over 97% of the time in LPM. 



Slide 42    

 

 

 

Part V 
 

 
 

Conclusion 



Slide 43    

 

 

MSP430 is right choice for Pumpkin�s CubeSat Kit Flight MCU 
* Single-chip MSP430F149 minimizes parts count.  
* On-board peripherals (USARTS, A/D, timers, interrupts) and multi-purpose I/O 

enables very high level of application functionality and system integration.  
* Ultralow-power operation and configurable clock module enable 24x7 MCU 

operation in hostile environment. 
* 3.3V operation easily integrated into 5V design. 
* C-friendly architecture with 60K Flash and 2K RAM presents opportunity for 

substantial functional software integration, thereby reducing system parts 
count. 

* Wide range of high-quality programming tools available. 
* Salvo RTOS on MSP430 simplifies software development, enables code 

modularity, and results in maintainable and expandable high-performance 
application with low power requirements. 

* MSP430 upgrade path will increase functional integration and performance, 
thereby further reducing overall CubeSat Kit parts count, cost and 
complexity. 

 



Slide 44    

 

 

                      

and the

                    

�

 
 

 
 
                                                                        are products of 
 

 
750 Naples Street 
San Francisco, CA 94112 USA 
tel: (415) 584-6360 
fax: (415) 585-7948 
web: http://www.pumpkininc.com/ 
web: http://www.cubesatkit.com/ 
email: info@pumpkininc.com 



Slide 45    

 

 

 

First presented at TI�s 3rd annual MSP430 Advanced Technical Conference in Dallas, Texas on 
November 9-11, 2004. 

 

Speaker information 
Dr. Kalman is Pumpkin's president and chief software architect. He entered the embedded programming 

world in the mid-1980's. After co-founding a successful Silicon Valley high-tech startup, he founded 
Pumpkin with an emphasis on software quality and applicability to a wide range of microcontroller-
based applications. He is also involved in a variety of other hardware and software projects.  

 
 

CubeSat information 
More information on the open CubeSat standard and the CubeSat community can be found at 

http://www.cubesat.info/ . 
 
 

Copyright notice 
© 2004 Pumpkin, Inc. All rights reserved. Pumpkin and the Pumpkin logo, Salvo and the Salvo logo, The 

RTOS that runs in tiny places, CubeSat Kit, CubeSat Kit Bus and the CubeSat Kit logo are all 
trademarks of Pumpkin, Inc. The TI signature, logo and Technology for Innovators are trademarks of 
Texas Instruments and are used with permission. All other trademarks and logos are the property of 
their respective owners. No endorsements of or by third parties listed are implied. 

 

All specifications subject to change without notice. 



Slide 46    

 

 

End Notes 
                                                 
1  Local / auto variables are not preserved across context switches. Note that the use of using static variables in tasks does not impact 

overall RAM requirements when compared to a typical preemptive or cooperative RTOS. 
2  Disabling timeouts reduces tcb size to 10 bytes. Optional tcb extensions (Salvo Pro only) require additional RAM per tcb. 
3  Can be reduced to 4 bytes by disabling event types. 
4  Salvo v3.2.0-b with IAR MSP430 C v1.26B. 
5  In bytes. Does not include interrupt vectors. 
6  In bytes. Does not include RAM allocated to the stack. 
7  Includes 2 bytes from the CDATA0 section. 
8  Includes 2 bytes on the IDATA0 section. 
9  Includes 2 bytes from the CDATA0 section. 
10  Includes 2 bytes on the IDATA0 section. 
11  As measured with tu4lite. 
12  Salvo Pro only. 
13  IAR MSP430 C v2.10A 


