
Slide 1

Making the Most of Limited I/O
(in your CubeSat and everywhere else)

Andrew E. Kalman, Ph.D.

Slide 2

• Andrew E. Kalman
President and CTO, Pumpkin, Inc.

Author of

Creator of the

20+ years of embedded systems design and programming
experience.

Contact: aek@pumpkininc.com

Introduction

Slide 3

Outline
• Overview: Presentation Goals
• Part I: Sharing On-Chip Peripherals
• Part II: Simultaneous Input & Output
• Part III: GPIO Pin Personalities
• Part IV: Efficient GPIO Pin Decoding
• Part V: Summary

Slide 4

Overview
• This presentation is targeted at CubeSat developers who

are either in the hardware and software design stages of
their CubeSat mission or are looking at ways to add new
functionality to an existing CubeSat design.

• We discuss how to achieve module-level peripheral
sharing with a minimum of extra circuitry and under
efficient software control.

• We examine individual GPIO pins to see how they can
perform more than just a single function.

• We present circuit-design techniques that allow GPIO
pins to function simultaneously as both inputs and
outputs.

• Examples of how these ideas are implemented in the
CubeSat Kit are also presented. The emphasis is always
on using as few GPIO pins as possible.

Slide 5

Part I: Sharing On-Chip Peripherals
• Modern MCUs are chock-full of useful peripherals:

• e.g. TI’s MSP430:
• GPIO
• Clock Module
• Timer_A3
• Timer_B7
• USART (with UART, SPI and I2C modules)
• ADC12
• DAC12
• DMA Controller
• etc.

• In order to be most efficient (viz. mass, power, cost) let’s
use a given peripheral in multiple operating modes instead
of using multiple peripherals in single operating modes.

Slide 6

Part I: Sharing On-Chip Peripherals

Slide 7

• Sometimes a multi-mode peripheral’s GPIO pins are
uniquely dedicated to a particular mode, and sometimes
they are shared amongst different operating modes.
• E.g. TI’s MSP430’s USART0 peripheral:

Part I: (cont’d)

Output
Input

Output

SCK

MISO

MOSI

P3.3

P3.2

P3.1

SPI

Output
Input & Output

SCL

SDA

P3.3

P3.1
I2C

Output
Input

Tx

Rx

P3.4

P3.5
UART

Slide 8

Part I: (cont’d)
• Basic thinking:

• “I’ll use peripheral X connected to device A in mode 1, peripheral Y
connected to device B in mode 2, and add another MCU to connect
to device C in mode 3. How hard can it be to add another
processor?”

• Intermediate thinking:
• “I’ll use peripheral X connected to device A in mode 1 and to device B

in mode 2, and bit-bang device C in mode 3 via unused GPIO pins
with some software I found on the web. Software peripherals are so
cool.”

• Advanced thinking:
• “I’ll use peripheral X connected to device A in mode 1 and to device B

in mode 2, and by adding a small circuit and using one more GPIO
pin I can even connect peripheral X to device C in mode 3. This is
kinda fun!”

Slide 9

Part I: (cont’d)
• In this example, can we use all three modules of a single

peripheral in our design? Yes!
• The UART’s pins are separate from SPI and I2C, so a serial

device (inherently point-to-point) can be permanently attached to
the UART module (P3.5 & P3.4).

• SPI devices can be attached to the SPI module (P3.3, P3.2 &
P3.1). Each device requires its own chip select signal via a
separate GPIO pin.

• I2C devices can be attached to the I2C module (P3.3 & P3.1).

• To be able to use all three modules, our connected
devices need to meet a few requirements:
• The MCU must initiate and terminate all communications.
• Each device’s communications must not be corrupted by the

actions of the module or the other devices.

Slide 10

Part I: (cont’d)
• Example triple-mode application:

• UART: still camera
• SPI: magnetometer
• I2C: ADC (solar panel currents)

• Simple application:
• Initialize USART0’s UART module for camera, request image data

from camera and receive it
• Initialize USART0’s SPI module for magnetometer, select

magnetometer, get flux data, deselect magnetometer
• Initialize USART0’s I2C module for ADC, get data

• repeat

• The faster you can communicate with a connected
device, the quicker you can switch between devices and
between modules.

Slide 11

Part I: (cont’d)
• Gotchas:

• The (re-)initialization of each module is necessary, especially if the
source of the previous initialization is unknown or unpredictable.
Module initialization usually requires several registers to be
configured. Better to re-write the registers completely than assume
certain bits are (still) configured as you need them.

• With interrupt-driven code, it’s essential to ensure that
communications are complete between the module and a
connected device before you change to a different module. E.g. if
talking at 1200bps (N,8,1) to a serial device with 32-byte packets
via the UART module, you cannot switch to the SPI or I2C
modules until a minimum of 267ms (i.e. 1/4s – a very long time for
an MCU!) after the last byte is enqueued for sending.

• Devices that require the MCU’s constant attention and
responsiveness (like an RS-232 modem which may deliver
incoming characters at any time) need dedicated peripherals.

Slide 12

Part I: (cont’d)
• Software Issues:

• A strictly sequential ordering of device access makes for very
simple code:

main ()

{

do

{

… other code …

UARTReadCamera();

SPIReadMagnetometer();

I2CReadSPCurrents();

I2CReadTemps();

… other code …

} while (TRUE);

}

because the re-initialization of the various modules is clearly laid
out. But it does not accommodate different sampling rates very
well.

Slide 13

Part I: (cont’d)
• Software Issues:

• A more complete approach uses a scheduler or RTOS:
void TaskReadCamera (void)

{ for (;;) { AcquireUSART(); InitUART(); ReadCamera();
OSDelay(ONE_SEC); ReleaseUSART(); } }

void TaskReadMagnetometer (void)

{ for (;;) { AcquireUSART(); InitSPI(); ReadMagnetometer();
OSDelay(HALF_SEC); ReleaseUSART(); } }

void TaskReadSPCurrents (void)

{ for (;;) { AcquireUSART(); InitI2C(); ReadSPCurrents();
OSDelay(TENTH_SEC); ReleaseUSART(); } }

void TaskReadTemps (void)

{ for (;;) { AcquireUSART(); InitI2C(); ReadTemps();
OSDelay(FIVE_SEC); ReleaseUSART(); } }

• This allows processes to share the modules at arbitrary rates.
Faster sampling is automatically interleaved with slower sampling.
Task priorities further simplify scheduling.

Slide 14

Part I: (cont’d)
• By using multiple modules of a single on-chip peripheral,

you:
• Use fewer GPIO pins, thus freeing them for other purposes.
• Use fewer on-chip peripherals, thus freeing them for other

purposes.
• Potentially run at lower power (less activity inside MCU).
• Design with less mass, power and cost for better efficiency.

• CubeSat Kit example:
UART, SPI and I2C devices are all accessed through USART0.
5 peripheral pins are required, plus one additional GPIO pin to
prevent I2C corruption while SPI clock and data are on shared
pins SCK/SCL and MOSI/SDA.
USART1 is dedicated to USB (pre-launch) or transceiver (pre- and
post-launch). This allows the CubeSat Kit to listen on USART1
100% of the time for incoming commands and data. This also
facilitates a “direct pipe” between mass storage (SD card on
USART0:SPI) and transceiver (on USART1:UART).

Slide 15

Part I: (cont’d)
• CubeSat Kit example: I2C isolator allows concurrent use

of SPI and I2C modules in USART0 peripheral at a cost
of one additional GPIO pin:

Slide 16

Part II: Simultaneous Input & Output
• Basic thinking:

• “Pin A will spend its life as a digital output, and I’ll dedicate pin B as a
digital input to sense condition X.”

• Advanced thinking:
• “By careful design and good programming, I can sense an important

bit of information (X) on pin A as an input even though I normally use
that pin as an output.”

Slide 17

Part II: (cont’d)
• CubeSat Kit example: A single GPIO pin connects USART1

to USB, and detects if USB is present.

• P1.7 configured as an output: USB is connected to the MCU when P1.7 is LOW, and
isolated and disconnected from the MCU when P1.7 is HIGH.

• P1.7 configured as an input: If P1.7 is HIGH, then USB is present since USB drives
VCC_IO. If P1.7 is LOW, USB must not be present (because VCC_IO is LOW). Either
way, USB remains isolated and disconnected from the MCU while being probed.

Slide 18

Part II: (cont’d)
• CubeSat Kit example (cont’d):

void TaskDetectUSB (void)
{

for (;;)
{

/* proceed if USB/MHX I/F is not in use */
OS_WaitBinSem(BINSEM_USB_MHX_AVAIL_P, OSNO_TIMEOUT);
OpenUSBMHXIF(USB);

if (!FM430status.USBpresent && (P1IN & BIT7))
{

FM430status.USBpresent = 1;
FM430Msg0("DetectUSB: USB connected.");

}
else if (FM430status.USBpresent && !(P1IN & BIT7))
{

FM430status.USBpresent = 0;
FM430Msg0("DetectUSB: USB disconnected.");

}

CloseUSBMHXIF(USB); /* release USB/MHX I/F */
OSSignalBinSem(BINSEM_USB_MHX_AVAIL_P);

OS_Delay(25); /* come back in 25 ticks */
}

}

Slide 19

Part II: (cont’d)
• CubeSat Kit example (cont’d): This single-pin driver and

sensor fulfills several functions:
• As an output, it independently controls the USB’s access to a shared

on-chip resource (USART1).
• As an input, it allows us to sense whether USB is present or not,

even when USART1 is connected to something else. The choice of
the LVC244A buffer with Ioff mode is critical to this function, and
illustrates how hardware choices are important. Detection of USB
present requires just a simple task that runs occasionally, in concert
with all other processes that use USART1.

• And it does it all with just a single GPIO pin!

Slide 20

Part II: (cont’d)
• Other examples: Multifunction analog/digital pins normally

configured as digital output pins can also function as analog
input pins if:
• the driving source (output) of the analog signal can be (over-)driven

by the digital output without damage, and
• if the normal recipient of the digital output can be disabled while the

analog signal is being sampled.

void ReadAnalogIns (void)

{

DisableP6IF(); /* disable digital devices on P6 */

ConfigureP6AnalogIns(); /* P6 pins become analog inputs */

ReadP6AnalogIns(); /* get ‘em! */

ConfigureP6DigitalOuts(); /* P6 pins go back to digital outputs */

EnableP6IF(); /* enable digital devices in P6 */

}

Slide 21

Part III: GPIO Pin Personalities
• Basic thinking:

• “I have two serial devices I need to connect to my MCU, one DTE
and one DCE. Their handshaking signals are exactly opposite, so I
need one set of GPIO for the DTE and one set for the DCE.”

• Advanced thinking:
• “I’ll use the same GPIO pins for the DTE and DCE handshaking, and

will (re-)configure the pins in software based on whether the MCU is
communicating with the DTE or DCE device.”

Slide 22

• CubeSat Kit Example: Hardware handshaking with USB
(DTE) and transceiver (DCE) using the same pins:
• Here, the signals flow in the same directions, but represent

complementary functions based on the RS-232 device’s type (DTE
or DCE). The application’s UART code must take this into account
and sense or drive the handshaking pins appropriately.

Part III: (cont’d)

from/to DCEfrom/to DTEPin Name

-RTS-CTSP6.3

-CTS-RTSP6.0

Slide 23

Part IV: Efficient GPIO Pin Decoding
• Basic thinking:

• “I have been using individual GPIO pins to control major subsystems
(e.g. power to power-hungry devices).”

• Advanced thinking:
• “Why not use the combination of these individual pins to add

functionality without consuming more GPIO pins?”

Slide 24

• CubeSat Kit Example: Careful use of decoder pins enabled
additional functionality without using any new pins:
• Initially, -ON_SD enabled power to the SD card, and –CS_SD

functioned as the SD card’s SPI chip select pin.
• The I2C isolation buffer needed a driver pin. Since I2C and SPI are

on the same peripheral, could the –ON_SD and –CS_SD signals be
used to decode the 3+ individual states to support SPI and I2C
operation?

• The solution presented itself as the –CS_SD/ON_I2C signal, one that
selects the SD card when LOW and enables I2C communications
when HIGH. The complementary nature of the two signals works to
our advantage. Piggybacking the ON_I2C signal on –ON_SD instead
would have been an unfortunate choice …

• The net result is 4 states which fully address the needs of SPI or I2C
decoding, and minimizing power consumption, while using only two
GPIO pins that had already been allocated to other purposes.

Part IV: (cont’d)

Slide 25

Part IV: (cont’d)

Slide 26

Part V: Summary
• Careful planning in the design stage and good coding can

result in reduced GPIO pin count requirements, leading to
other efficiencies.

• Any time a connection to an external device is not
needed 100% of the available time, consider sharing its
interface (external GPIO pins and internal peripherals)
with other devices. You may save resources in doing so.

• Reducing GPIO pin requirements can allow you to do
more with less.

• Signal polarities often affect how efficiently you can use
single GPIO pins for multiple purposes.

Slide 27

Part V: (cont’d)
• The CubeSat Kit implements:

Two UARTs
One I2C chain to unlimited I2C devices
One SPI chain to on-board SD and off-board SPI devices
Detection and control of the USB interface
Control of an I2C isolating interface
Control of the transceiver interface
Control of power to the transceiver
Control of power to the SD card
Control of power to a RTC chip
Chip select of the SD card

with just 12 of the MSP430’s GPIO pins and two
peripherals, leaving 36 of 48 available GPIO pins and the
rest of the peripherals free to the user.

Slide 28

This presentation is available online in Microsoft®

PowerPoint® and Adobe® Acrobat® formats at:

www.pumpkininc.com/content/doc/press/Pumpkin_CubeSatWorkshop2006.ppt

and:

www.pumpkininc.com/content/doc/press/Pumpkin_CubeSatWorkshop2006.pdf

Notice

Slide 29

Q&A Session

Thank you for
attending this

Pumpkin
presentation at the
Cal Poly CubeSat
Workshop 2006!

Slide 30

Notes & References
1. MSP430x16x block diagram from TI’s MSP430F1612 datasheets.
2. CubeSat Kit User Manual, Pumpkin, Inc. 2005.

Slide 31

Appendix
• Speaker information

Dr. Kalman is Pumpkin's president and chief software architect. He entered the embedded programming world
in the mid-1980's. After co-founding the successful Silicon Valley high-tech pro-audio startup Euphonix, Inc. he
founded Pumpkin with an emphasis on software quality, performance and applicability to a wide range of
microcontroller-based applications. He holds two United States patents, is a consulting professor at Stanford
University and is invariably involved in a variety of hardware and software projects.

• Acknowledgements
Stanford Professor Bob Twiggs' continued support for the CubeSat Kit, and his input on enhancements and
suggestions for future CubeSat Kit products, are greatly appreciated.
Pumpkin’s Salvo and CubeSat Kit customers, whose real-world experience with our products helps us improve
and innovate.

• Salvo, CubeSat Kit and CubeSat information
More information on the Pumpkin’s Salvo RTOS and Pumpkin’s CubeSat Kit can be found at
http://www.pumpkininc.com/ and http://www.cubesatkit.com/, respectively.
More information on the open CubeSat standard and the CubeSat community can be found at
http://www.cubesat.info/.

• Copyright notice
© 2006 Pumpkin, Inc. All rights reserved. Pumpkin and the Pumpkin logo, Salvo and the Salvo logo, The
RTOS that runs in tiny places, CubeSat Kit, CubeSat Kit Bus and the CubeSat Kit logo are all trademarks of
Pumpkin, Inc. All other trademarks and logos are the property of their respective owners. No endorsements of
or by third parties listed are implied. All specifications subject to change without notice.

First presented at the 3rd Annual CubeSat Workshop at Cal Poly San Luis Obispo, on April 28, 2006.

