

CubeSat Kit[™] Pluggable Processor Module (PPM) D2 Hardware Revision: A

PPM with Microchip® dsPIC33 for CubeSat Kit Motherboard

Applications

- CubeSat nanosatellite control, C&DH, TT&C
- · General-purpose low-power computing for CubeSat Kit architecture
- DSP computing for CubeSat Kit SDRs
- Remote sensing for harsh environments

Features

- For CubeSat Kit Motherboard (MB)
- Microchip® dsPIC33FJ256GP710 16-bit digital signal controller (DSC)
- CPU with MCU and DSP capabilities
- 256KB program memory, 30KB on-chip SRAM
- Up to 40MIPS @ 80MHz
- Integrated peripherals:
 - 2 UARTs, 2 SPIs, 2 I2Cs, 2 ECANs
 - Data Converter Interface (DCI) module with codec interface
 - 8-channel DMA
 - 32-channel 10/12-bit 1.1Msps/500ksps ADC
 - 9 16-bit timers
 - 8 capture inputs
 - 8 compare / PWM outputs
 - RTCC, WDT, ICD, JTAG, etc.
- 8.000MHz & 32.768kHz clock crystals
- AT25DF641 64Mbit SPI serial Flash memory
- Independent latchup (device overcurrent) protection
- Independent external reset supervisor (POR/BOR)
- Medium-size PPM footprint
- 4-layer gold-plated blue-soldermask PCB
- Compatible with Pumpkin's Salvo[™] RTOS and HCC-Embedded's EFFS-THIN SD Card file FAT file system for ease of programming

Prototype shown.

ORDERING INFORMATION

Pumpkin P/N 710-00528

Option Code	PPM Connector Height
/00 (standard)	+3mm

Contact factory for availability of optional configurations. Option code /00 shown

CAUTION

Electrostatic Sensitive Devices

Handle with Care

CHANGELOG

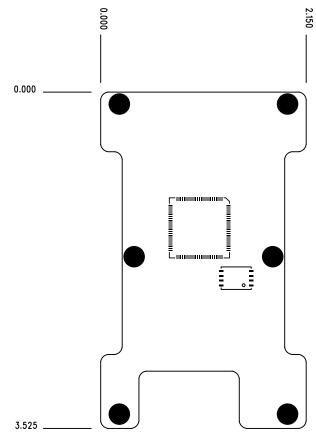
Rev.	Date	Author	Comments
Α	20090713	AEK	Initial revision.
В	20090728	AEK	Updated PPM pin descriptions and image, minor nomenclature changes, max heights of PCB, brought nomenclature inline with PPM A1/A2/A3, added additional signal information, other minor changes.
С	20090729	AEK	Resolved minor formatting inconsistencies.
D	20090808	AEK	Added photo.
E	20091030	AEK	XT crystal now 20MHz.
F	20100302	AEK	HS5 description corrected (to RD1). XT crystal now 8.000MHz.
G	20100506	AEK	XT crystal in block diagram updated to 8MHz.
Н	20101021	AEK	Added typical operating current.

OPERATIONAL DESCRIPTION

PPM D2 enables CubeSat Kit customers to utilize the dsPIC33 processor on a CubeSat Kit Motherboard (MB). PPM D2 uses the 100-pin dsPIC33FJ256GP710-I/PF, with a wide selection of on-chip peripherals. Additionally, a 64Mbit external serial Flash memory is present for off-chip storage.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Units
Operating temperature	T _A	-40 to +85	°C
Voltage on +5v_USB bus			
Voltage on +5v_sys bus		-0.3 to +6.0	V
Voltage on -FAULT_OC open-collector output			
Voltage on vcc bus		-0.3 to +3.6	V
Voltage on vcc_sp bus		-0.3 10 +3.0	v
Voltage on any mixed analog/digital processor I/O pin		-0.3 to	
		(VCC + 0.3)	V
Voltage on any digital-only processor I/O pin		-0.3 to 6.0	
DC current through any pin of PPM connector H1	I _{PIN_MAX}	1.2	А


Refer to the dsPIC33FJxxxGPx10 family datasheet for additional absolute maximum ratings associated with processor **u1**, especially per-pin current limits.

PHYSICAL CHARACTERISTICS

Parameter	Conditions / Notes	Symbol	Min	Тур	Max	Units
Mass				17		g
Height of components above PCB					2	mm
Height of components below PCB ¹					4	mm
PCB width				54.6		mm
PCB length	Medium-size PPM			89.5		mm
PCB thickness				1.6		mm

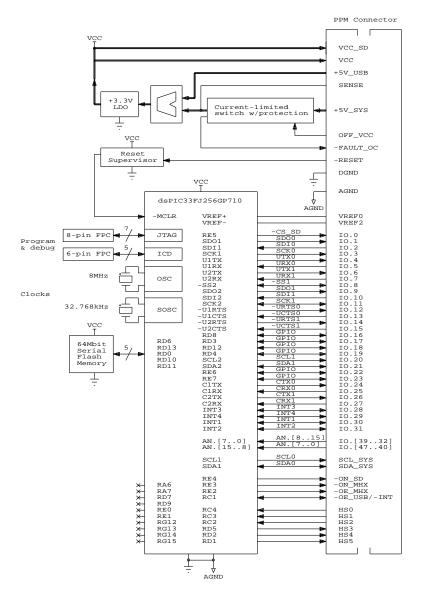
SIMPLIFIED MECHANICAL LAYOUT²

PPM D2 is implemented on a medium-size PPM PCB, as shown below.

¹ Not including connector H1.

² Dimensions in inches.

ELECTRICAL CHARACTERISTICS

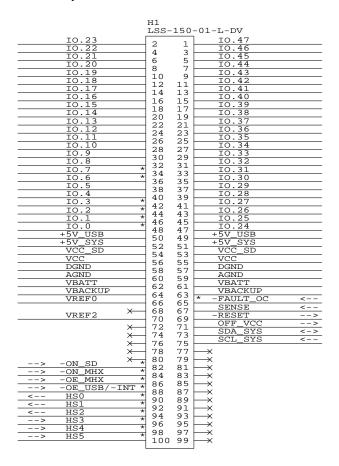

(T = 25°C, +5V bus = +5V unless otherwise noted)

Parameter	Conditions / Notes	Symbol	Min	Тур	Max	Units
Reset voltage	+5v_svs reduced until MCU resets	V _{RESET_MAX}			3.1	V
Operating Voltage		V _{cc}		3.3		V
SD Card Voltage		V _{CC_SD}		3.3		V
	Typical operation ³	I _{OP}		20		mA
Operating current	All control outputs inactive, PPM asleep	I _{SLEEP}		TBD	TBD	μA
Primary crystal frequency		f_{CLK_OSC}	8	.000 ± 0.0)1	MHz
Secondary crystal frequency		f_{CLK_SOSC}	32	.768 ± 0.0	01	kHz
Overcurrent trip point for vcc	Set by R3	I _{TRIP_VCC}		220		mA
Time to switch between +5v_sys and +5v_usb power sources	Automatic				1	μs

³ Running CubeSat Kit test\test1 application v1.2.2.

BLOCK DIAGRAM

PPM D2 provides regulated and current-limited +3.3V power, an external POR/BOR reset supervisor, JTAG and ICD interfaces for programming and debugging, two clock sources, an external high-speed 64Mbit serial Flash memory, connections to all 48 I/O pins of the PPM connector, dedicated MB control and radio handshaking signals, a single-point analog/digital ground, and a careful assignment of the dsPIC33 peripherals to the PPM connector and CubeSat Kit bus. A few of the dsPIC33's 100 pins are not used.


PPM PIN DESCRIPTIONS

The PPM connector **H1** connects the PPM to resources residing on the MB and to resources accessible via the CubeSat Kit Bus connector.⁴

Those signals that are connected directly to the PPM connector and to the CubeSat Kit Bus connectors are tagged under the CSKB label below.⁵ Signals marked with an ^(*) are associated with dedicated peripherals on the MB. They may also be used with off-board peripherals through the proper use of MB peripheral enables and MB power control.

The *potential* for a pin's function is described by the I/O field. The *recommended usage* (as a digital or analog input or output, or as a power pin) is listed in the Description field. I/O pins can generally be configured as general-purpose I/O if the recommended usage is not desired.

Inputs are signals *from* the MB *to* the PPM's processor **U1** or other circuitry. *Outputs* are signals *from* the PPM's processor **U1** or other circuitry *to* the MB.

⁴ Not included. MBs are purchased separately from PPMs.

⁵ The CubeSat Kit's system peripherals are numbered from 0 onwards (e.g., UART0, SPI0, etc.), and this nomenclature is used when referring to a PPM or CSK bus signal. The dsPIC33's peripheral nomenclature begins with 1 (e.g., U1, SPI1, etc.), and is used when referring to peripherals, signals and registers internal to the dsPIC33.

PPM PIN DESCRIPTIONS – I/O

Name	Pin	I/O	CSKB	Description
				-CS_SD. Controls SD Card interface. From RE5 (U1.3). Part
10.0	H1.48	I/O	•	of the MB's SD card interface. RE5 is normally configured as
				a simple output.
				SDO0. SPI0 (master) data out. From SDO1 (U1.53). Part of
10.1	H1.46	I/O	•	the MB's SD card interface. SD01 is normally configured as
				output function SDO1.
				SDI0. SPI0 (master) data in. To SDI1 (U1.54). Part of the
10.2	H1.44	I/O	•	MB's SD card interface. SDI1 is normally configured as input
		-		function SDI1.
10.3	114 40	1/0	•	SCK0. SPI0 clock. From SCK1 (U1.55). Part of the MB's SD
10.3	H1.42	I/O	•	card interface. SCK1 is normally configured as output
				function SCK1. UTX0. Tx0 data out. From U1TX (U1.51). RP16 is normally
10.4	H1.40	I/O	•	configured as output function U1TX.
				URX0. Rx0 data in. To U1RX (U1.52). RP30 is normally
IO.5	H1.38	I/O	•	configured as input function U1RX.
		-		UTX1. Tx1 data out. From U2TX (U1.50). Part of the MB's
10.6	H1.36	I/O	•	MHX/USB interface. U2TX is normally configured as output
	111.00			function U2TX.
				URX1. Rx1 data in. To U2RX (U1.49). Part of the MB's
10.7	H1.34	I/O	•	MHX/USB interface. U2RX is normally configured as input
	_			function U2RX.
				-ss1. SPI1 slave select. From -ss2 (U1.14). Part of the
IO.8	H1.32	I/O	•	second SPI interfacess2 is normally configured as output
				function –SS2. Can also be used as general-purpose I/O.
				SDO1. SPI1 (master) data out. From SDO2 (U1.12). Part of
10.9	H1.30	I/O	•	the second SPI interface. SDO2 is normally configured as
10.5	111.50	1/0	•	output function SDO2. Can also be used as general-purpose
				Ι/Ο.
				SDI1. SPI1 (master) data in. To SDI2 (U1.11). Part of the
10.10	H1.28	I/O	•	second SPI interface. SDI2 is normally configured as input
	_			function SDI2. Can also be used as general-purpose I/O.
TO 11	111.00	1/0		SCK1. SPI1 clock. From SCK2 (U1.10). Part of the second
10.11	H1.26	I/O	•	SPI interface. sck2 is normally configured as output function SCK2. Can also be used as general-purpose I/O.
		+		-URTS0. UART0 request-to-send. From -UIRTS (U1.48). Part
				of the first UART interface. – UIRTS is normally configured as
10.12	H1.24	I/O	•	output function -U1RTS. Can also be used as general-
				purpose I/O.
				-UCTS0. UARTO clear-to-send. To -U1CTS (U1.47). Part of
10	114.00			the first UART interface. – U1CTS is normally configured as
10.13	H1.22	I/O	•	input function –U1CTS. Can also be used as general-
				purpose I/O.
				-URTS1. UART1 request-to-send. From -U2RTS (U1.39).
10.14	H1.20	I/O	•	Part of the second UART interfaceU2RTS is normally
	111.20	"0	-	configured as output function –U2RTS. Can also be used as
				general-purpose I/O.
				-UCTS1. UART1 clear-to-send. To -U2CTS (U1.40). Part of
10.15	H1.18	I/O	•	the second UART interface. – U2CTS is normally configured
	-	_		as input function –U2CTS. Can also be used as
TO 16		1/0		general-purpose I/O.
IO.16 IO.17	H1.16	I/O	•	General-purpose I/O. To/from RD8 (U1.68).
IO.17 IO.18	H1.14	I/O		General-purpose I/O. To/from RD3 (U1.78).
10.19	H1.12	I/O	•	General-purpose I/O. To/from RD12 (U1.79).

© Pumpkin, Inc. 2003-2010

CubeSat Kit PPM D2 Rev. A

10.19	H1.10	I/O	•	General-purpose I/O. To/from RD4 (U1.81).
				SCL1. I2C1 clock. From SCL2 (U1.58). Part of the second I2C
IO.20	H1.8	I/O	•	interface. SCL2 is normally configured as an I2C clock output.
				Can also be used as general-purpose I/O.
				SDA1. I2C1 data. To/from SDA2 (U1.59). Part of the second
IO.21	H1.6	I/O	•	I2C interface. SDA2 is normally configured as an I2C data
				input/output. Can also be used as general-purpose I/O.
IO.22	H1.4	I/O	•	General-purpose I/O. To/from RE6 (U1.4).
IO.23	H1.2	I/O	•	General-purpose I/O. To/from RE7 (U1.5).
				COTX. CANbus 0 transmit data. From C1TX (U1.88). Part of
10.24	H1.47	I/O	•	the first CAN interface. ClTX is normally configured as a
				CAN output. Can also be used as general-purpose I/O.
				CORX. CANbus 0 receive data. From C1RX (U1.87). Part of
10.25	H1.45	I/O	•	the first CAN interface. Clrx is normally configured as a
10110	111.40			CAN input. Can also be used as general-purpose I/O.
				C1TX. CANbus 1 transmit data. From C2TX (U1.89). Part of
10.26	H1.43	I/O	•	the second CAN interface. C2TX is normally configured as a
10.10	111.40	"0	-	CAN output. Can also be used as general-purpose I/O.
				C1RX. CANbus 1 receive data. From C2RX (U1.90). Part of
10.27	H1.41	I/O	•	the second CAN interface. C2RX is normally configured as a
10.27	111.41	1/0	•	CAN input. Can also be used as general-purpose I/O.
				INT3 . External interrupt. To INT3 (U1 .66). <i>INT3</i> is normally
10.28	H1.39	I/O	•	configured as input function INT3. Can also be used as
10.20	111.59	1/0	•	general-purpose I/O.
				INT4 . External interrupt. To INT4 (U1 .67). <i>INT4</i> is normally
10.29	H1.37	I/O	•	configured as input function INT4. Can also be used as
10.29	111.57	1/0	•	general-purpose I/O.
				INT1 . External interrupt. To INT1 (U1 .18). <i>INT1</i> is normally
IO.30	H1.35	I/O	•	configured as input function INT1. Can also be used as
10.50	111.00	"0	•	general-purpose I/O.
				INT2 . External interrupt. To INT2 (U1 .19). <i>INT2</i> is normally
10.31	H1.33	I/O	•	configured as input function INT2. Can also be used as
10101	111.00			general-purpose I/O.
				AN8 . Analog input 8. To AN5 (U1.20). Can also be used as
IO.32	H1.31	I/O	•	general-purpose I/O.
				AN9 . Analog input 9. To AN4 (U1.21). Can also be used as
IO.33	H1.29	I/O	•	general-purpose I/O.
				AN10 . Analog input 10. To AN3 (U1 .22). Can also be used as
IO.34	H1.27	I/O	•	general-purpose I/O.
				AN11 . Analog input 11. To AN2 (U1 .23). Can also be used as
IO.35	H1.25	I/O	•	general-purpose I/O.
				AN12. Analog input 12. To AN1 (U1.24). Also used for PGEC
IO.36	H1.23	I/O	•	(ICD clock). Can also be used as general-purpose I/O.
				AN13 . Analog input 13. To AN0 (U1.25). Also used for PGED
IO.37	H1.21	I/O	•	(ICD data). Can also be used as general-purpose I/O.
				AN14 . Analog input 14. To AN6 (U1 .26). Can also be used as
IO.38	H1.19	I/O	•	general-purpose I/O.
		+ +		AN15 . Analog input 15. To AN7 (U1 .27). Can also be used as
IO.39	H1.17	I/O	•	general-purpose I/O.
				ANO . Analog input 0. To AN8 (U1.32). Can also be used as
IO.40	H1.15	I/O	•	
				general-purpose I/O.
IO.41	H1.13	I/O	•	AN1 . Analog input 1. To AN9 (U1.33). Can also be used as
				general-purpose I/O.
IO.42	H1.11	I/O	•	AN2 . Analog input 2. To AN10 (U1.34). Can also be used as
				general-purpose I/O.
IO.43	H1.9	I/O	•	AN3 . Analog input 3. To AN11 (U1.35). Can also be used as
	1			general-purpose I/O.

CubeSat Kit PPM D2 Rev. A

10.44	H1.7	I/O	•	AN4 . Analog input 4. To AN12 (U1.41). Can also be used as general-purpose I/O.
10.45	H1.5	I/O	•	AN5 . Analog input 5. To AN13 (U1.42). Can also be used as general-purpose I/O.
10.46	H1.3	I/O	•	AN6 . Analog input 6. To AN14 (U1.43). Can also be used as general-purpose I/O.
10.47	H1.1	I/O	•	AN7 . Analog input 7. To AN15 (U1.44). Can also be used as general-purpose I/O.

PPM PIN DESCRIPTIONS – Power

Name	Pin	I/O	CSKB	Description
+5V_USB	H1.49 H1.50	-	•	+5V USB power. From USB host. Powers PPM.
+5V_SYS	H1.51 H1.52	-	•	+5V system power. From EPS or external +5V connector. Powers PPM.
VCC_SD	H1.53 H1.54	-		+3.3V SD Card power. From PPM's vcc.
vcc	H1.55 H1.56	-		+3.3V PPM power, MB power and I/O level. From PPM LDO U4 using +5v_sys and/or +5v_USB.
DGND	H1.57 H1.58	-	•	Digital ground.
AGND	H1.59 H1.60	-	•	Analog ground.
VBATT	H1.61 H1.62	-	•	Not connected.
VBACKUP	H1.63 H1.64	-	•	Not connected.

PPM PIN DESCRIPTIONS – Analog References

Name	Pin	I/O	CSKB	Description
VREF0	H1.66	-	•	Positive analog voltage reference. To/from VREF+ (U1.29).
VREF1	H1.68	-	•	Not connected.
VREF2	H1.70	-	•	Negative analog voltage reference. To/from VREF- (U1.28).

PPM PIN DESCRIPTIONS – Reserved

Name	Pin	I/O	CSKB	Description
RSVD0	H1.72	_	•	Not connected. Reserved for future use.
RSVD2	H1.74	_	•	Not connected. Reserved for future use.
RSVD2	H1.76	_	•	Not connected. Reserved for future use.

PPM PIN DESCRIPTIONS – MB-Specific

Name	Pin	I/O	CSKB	Description
CB4	H1.78	1		Not connected.
USBDP	111.70	1		Not connected.
CB2				Net connected
USBDM	H1.80			Not connected.
-ON_SD	H1.82	0		Control signal for SD Card power. From RE4 (U1 .100). Active LOW, pulled high on MB. When active, enables VCC_CARD on MB, thereby powering SC Card socket and SD Card level translators / isolators. <i>Normally configured as a digital output</i> .
-ON_MHX	H1.84	0		Control signal for MHX socket power. From RE3 (U1.99). Active LOW, pulled high on MB. When active, enables PWR_MHX on MB, thereby powering MHX socket and MHX level translators / isolators. <i>Normally configured as a digital</i> <i>output</i> .

-OE_MHX	H1.86	0	Control signal for MHX interface. From RE2 (U1 .98). Active LOW, pulled high on MB. When active, enables signals to pass through MHX level translators / isolators. <i>Normally configured as a digital output.</i>	
-OE_USB	O H1.88		Control signal for USB interface. From RC1 (U1.6). Active LOW, pulled high on MB. When active, enables signals to pass through USB level translators / isolators. <i>Normally</i> <i>configured as a digital output.</i>	
-INT		I	Output from RTC's -IRQ open-collector output. To RC1 (U1.6). <i>Normally configured as a digital input.</i>	
нсо	H1.90	I	Handshake signalRTS (USB) or -CTS (MHX). To RC4 (U1.9). Normally configured as a digital input. Requires that R10 be fitted on the MB.	
HS1	H1.92	I	Handshake signalDTR (USB) or -DSR (MHX). To RC3 (U1.8). Normally configured as a digital input. Requires that R11 be fitted on the MB.	
HS2	H1.94	I	Handshake signalPWE (USB) or -DCD (MHX). To RC2 (U1.7). Normally configured as a digital input. Requires that R12 be fitted on the MB.	
HS3	H1.96	ο	Handshake signalCTS (USB) or -RTS (MHX). From RD5 (U1.82). Normally configured as a digital output. Requires that R75 be fitted on the MB.	
HS4	H1.98	ο	Handshake signalRI (USB) or -DTR (MHX). From RD2 (U1.77). Normally configured as a digital output. Requires that R76 be fitted on the MB.	
HS5	H1.100	ο	Handshake (reset) signalRST (USB) or -RST (MHX). From RD1 (U1.76). Normally configured as a digital output. Requires that R77 be fitted on the MB.	

PPM PIN DESCRIPTIONS – Control & Status

Name	Pin	I/O	CSKB	Description	
-FAULT_OC	H1.65	0		Open-collector output from PPM's latchup prevention overcurrent switch. Active LOW. Wire-ORed to -FAULT_OC on MB.	
SENSE	H1.67	_	 Can be used to measure PPM's current consumption. The current used by the PPM from a single source is (source – sense) / 75mΩ. Depends on PPM implementation. 		
-RESET	H1.69	I	•	Reset signal to PPM's reset supervisor. Active LOW.	
OFF_VCC	H1.71	I	Control signal to PPM's power circuit(s). Active HIGH.		

PPM PIN DESCRIPTIONS – I2C Bus

Name	Pin	I/O	CSKB	Description	
				I2C data. To/from SDA1 (U1.56). Part of the first I2C	
SDA_SYS	H1.73	I/O	•	interface. SDA1 is normally configured as an I2C data	
				input/output. Can also be used as general-purpose I/O.	
				I2C clock. From scl1 (U1.57). Part of the first I2C interface.	
SCL_SYS	H1.75	0	•	SCL1 is normally configured as an I2C clock output. Can also	
				be used as general-purpose I/O.	

PPM PIN DESCRIPTIONS – User-defined

Name	Pin	I/O	CSKB	Description
USER0	H1.77	I/O	•	Not connected.
USER1	H1.79	I/O	•	Not connected.
USER2	H1.81	I/O	•	Not connected.
USER3	H1.83	I/O	•	Not connected.

CubeSat Kit PPM D2 Rev. A

USER4	H1.85	I/O	•	Not connected.
USER5	H1.87	I/O	•	Not connected.
USER6	H1.89	I/O	•	Not connected.
USER7	H1.91	I/O	•	Not connected.
USER8	H1.93	I/O	•	Not connected.
USER9	H1.95	I/O	•	Not connected.
USER10	H1.97	I/O	•	Not connected.
USER11	H1.99	I/O	•	Not connected.

SERIAL FLASH MEMORY INTERFACE

PPM D2 has an external 64Mbit serial flash memory (SFM) peripheral implemented via an SPI interface to an Atmel AT25DF641 (U5). A software SPI driver is required to read and write from/to the SFM via this interface. The pin assignments associated with this interface are listed below.

PIN DESCRIPTIONS – Serial Flash Memory Interface

Name	Pin	I/O	Description		
-WP	U5.3	I/O	-WP_SFM. SFM write-protect function. From RD6 (U1.83). Part of a		
-WP	05.5	1/0	software SPI interface. RD6 is normally configured as a simple output.		
-CS	U5.1 I/O				-CS_SFM. SFM chip select. From RD23 (U1.80). Part of a software SPI
-05	U5.1	1/0	interface. RD23 is normally configured as a simple output.		
TUP	SDI U5.5 I/O		SDO_SFM. SPI2 (master) data out. From RD0 (U1.72). Part of a software		
SDI			SPI interface. RD0 is normally configured as a simple output.		
SDO	U5.2	I/O	SDI_SFM. SPI2 (master) data in. From RD10 (U1.70). Part of a software		
500	SD0 05.2 1/0		SPI interface. RD10 is normally configured as a simple input.		
SCK	U5.6	I/O	SCK_SFM. SPI2 clock. From RD11 (U1.71). Part of a software SPI		
BCK	05.0	1/0	interface. RD11 is normally configured as a simple output.		

CONNECTORS

Item	Description	Source	Part Number	Application
1	100-pin, hermaphroditic	Samtec	LSS-150-01-L-DV	PPM connector (standard, +3mm)

This connector information is provided for reference only.

PROGRAMMING & DEBUGGING

PPM D2 provides two interfaces for programming and debugging – the popular and low-cost In-Circuit Debugging (ICD) interface, and a JTAG interface. Both are implemented via Flexible Printed Circuit (FPC) connectors on the PPM.

6-pin FPC connector J1 is for the ICD. Via Pumpkin's JFPC-PIC24 adapter, customers can connect either a traditional Microchip® ICD like the ICD2, with its 6-pin RJ11 6P6C connector⁶, or a Microchip PICKit, with its 6-pin 0.100" pitch in-line header. The JFPC-PIC24 connects to PPM D2 via a 6-conductor FPC cable. **PGEC** (U1.24) and **PGED** (U1.25) are used as the clock/data pair for the ICD. No isolation from these signals to the CSK bus is provided – therefore care should be taken in connecting circuitry to IO.36 and IO.37 of the CSK bus.

8-pin FPC connector **J2** is for JTAG, and is compatible with 8-conductor FPC cables. Customers who wish to use the JTAG port must fabricate their own adapter.

NOTES

PPM D2 (dsPIC33) is built on the same Pumpkin PCB (705-00525) as PPM D1 (PIC24), with minor differences in the components placed at assembly time.

⁶ Also called RJ25.

TRADEMARKS

The following are Pumpkin trademarks. All other names are the property of their respective owners.

- Pumpkin[™] and the Pumpkin logo
- Salvo[™] and the Salvo logo
- CubeSat Kit™ and the CubeSat Kit logo
- MISC[™] and the MISC logo

DISCLAIMER

PUMPKIN RESERVES THE RIGHT TO MAKE ANY CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO CORRECT ERRORS AND IMPROVE RELIABILITY, FUNCTION, APPEARANCE OR DESIGN. PUMPKIN DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

744 Naples Street San Francisco, CA 94112 USA tel: (415) 584-6360 fax: (415) 585-7948

web: <u>http://www.pumpkininc.com/</u> email: <u>info@pumpkininc.com</u> web: <u>http://www.cubesatkit.com/</u> email: <u>info@cubesatkit.com</u>